In My Classroom: Reading Peer-Reviewed Papers

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

This year I am teaching a class that is new to me called “Honors Biology 2”. This course is split into Genetics the first semester and Microbiology the second semester. I was given a rough curriculum for the course and was encouraged to make it my own. Having only taught Freshman Biology last year (which was my first year teaching) I was a little nervous about how to challenge these students.

On the second day of school I asked my students to write down everything they could tell me about DNA. I not only got full molecular structures with phosphodiester bonds labeled, but some students drew full replication forks with all enzymes labeled. My next days’ lesson for reviewing DNA structure and replication was scrapped and I came to class the next day with 70 copies of Meselson and Stahl’s original publication.

My smarty-pants students said “they proved DNA replicates semi-conservatively”, to which I said “how did they prove that?”. Shocker, but they didn’t have a response.

The look I got when I asked students to explain “how”
via giphy

So we started into it. I gave my students a CER form and asked them to explain the evidence provided in the paper for how DNA replicates. They ended up needing 3 full class periods to get through the paper and really understand it, and they complained all three of those days. After students understood something they would say “why didn’t they just say that in the paper” or “why did that have to be so difficult” which lead us into good conversations about the content as well as science in general.

Despite my students’ grumbles we have read 4 scientific, peer-reviewed papers this year. For our most recent one, titled “A microbial symbiosis factor prevents intestinal inflammatory disease” I had students create a mini-poster that describes the experiment. I’ve also had students summarize each paragraph of these papers into one sentence, re-do a diagram in the paper, use the thing explainer method to explain the paper, or draw a graphic novel explanation of the paper. We have gotten to the point where students don’t actively hate these papers and have started to see them as a cool way to gain new information.

An example of a mini-poster that explains the research. Note the diagrams taken from the paper and the dead mouse.

I’ve used these papers to introduce new ideas or elaborate concepts with recent research. The thing I’ve found most rewarding as a teacher is how confident my students feel once they are able to explain these difficult readings. They face a challenge, overcome it, and then feel really great about it. It has also forced them to “think like a scientist” if I ask them things like “why did they do it that way”. Several parents have said things like “I couldn’t even understand the title of that” or “my student came home and explained this to me”. I haven’t had my Freshman biology students read a full paper (yet), but have had them read abstracts or analyze some cool diagrams.

That’s all for me. Sorry for going way over my 250 word limit. Kelly Kluthe is next at her own request!

P.S. thanks to Eric Kessler’s how-to for helping me stop making excuses for posting!

In My Classroom: Investigating Mosquito-Borne Diseases

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

I’ve been meaning to post about this project for a while now. This was our first major research project for my Biology 1 students this year. With Zika in the news all summer, I wanted to do a project incorporating mosquitos.

My vision for the project was to have students collect mosquito eggs, hatch them, then raise them in observation chambers subjected to different experimental variables. At the end, students would use their data to draw conclusions about mosquito behavior and life cycles. Students would collect data on the number of days until adults emerged, how temperature affected emergence rates, whether males or females emerge faster, and the percent of eggs that would make it to adulthood. Then students would use this information to develop a plan to slow the spread of mosquito-borne disease.

I stress that this was my vision because this experiment didn’t work so well in reality. My students made oviposition traps using Solo cups, following the method outlined here: http://www.citizenscience.us/imp/, which is a wonderful citizen science project (talk to Noah Busch for more information!). Some groups decided to make more complicated traps. We placed the traps around campus, testing different types of sites, but we collected very few eggs! I was surprised by this result, but I found an aquaculture company to purchase mosquito larvae (Sachs Systems Aquaculture: http://www.aquaculturestore.com/Mosquito-Larvae.html).

Spray-painting our egg traps black.

Spray-painting our egg traps black.

After this initial hiccup, we had enough larvae to carry out the experiments in the observation chambers. I followed the chamber design from HHMI (http://www.hhmi.org/biointeractive/classroom-activities-mosquito-life-cycle). Some groups studied the effects of various temperatures, some studied the pH of the water, some wanted to look at the effects of light, among other things. We couldn’t afford as many larvae as I wanted, but we made things work by combining classroom data for students to analyze.

Mosquito observation chamber.

Mosquito observation chamber.

Once all of the data was collected, my students made their conclusions about mosquito control methods. They presented their findings and ideas using posters. We had a poster walk, and students were encouraged to share feedback with each other.

Successful emergence of adults!

Successful emergence of adults!

In My Classroom: Investigating Energy Flow with ZOMBIES!

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

Investigating Energy Flow with ZOMBIES!

studentwork

The Set-Up

It’s the zombie apocalypse! You have a safe fenced-in area that is impenetrable to the zombies.  But, you also cannot leave the fenced in area. If you had time to prepare this land, what would you plant? What livestock would you have? (Note: Students have the option of doing a Mars Biodome if they do not want to do the zombie apocalypse.)

Student groups are all given the same 11 x 17 inch grid paper. Each square equals 100 square feet. Each student needs a housing structure(s) that equal 20×25 squares.

grid

The Goal

Sustain as many humans as possible using the land space given. The group who can sustain the highest number of people wins. The criteria for sustainability is 2,000 calories per day, per adult (730,000 calories per year). (Note: No stockpiling allowed).

The Work

Students need to find the total number of producer calories from all their crops. (Find the calories / square foot for each food, and then multiple by the number of total square feet.)

corn

Then, students need to calculate how many of those producer calories are actually available for human consumption. To do so, students must figuring out how many of those producer calories their livestock will consume per year.

plant-cal-conversion

The only livestock here was goats, if you have different species of livestock you’ll want to add those together to do this calculation.

Next, students need to find the total number of anaimal calories produced. They calculate how many calories of meat (or eggs/dairy) each animal produces. (To simplify, one could assume the entire weight of the animal is meat.) Students do this for each type of livestock and add it together to find the total number of livestock calories produced. (If you have any secondary consumers, they will take a whole other set of calculations!)

Next, students find out how many calories their land produced for human consumption. They take the number of plant calories available for humans and add it to the total number of animal calories produced. Then, they divide that by 730,000 (the total number of calories needed per human per year) to see how many humans they can support.

1865

Getting the Numbers

To make it easier, you could provide a list of several crop and livestock options with their calorie information. But, for me, one of the best parts of this project was having it open ended for the students. I have my students find the information on their own, but they have to back it up with a credible source. This gets pretty competitive, so the students really hold each other accountable.

Discussions

Here are some important questions that we discussed after completing this project:

Goat image from Microsoft clip art

Goat image from Microsoft clip art

  1. Why do we lose calories when we feed them to livestock?
  2. What is the “best” crop? (calories vs. nutrients)
  3. Should we be putting plant calories into livestock?
  4. What are the pros and cons of having livestock?
  5. What would be the “best” livestock? (For example, for many reasons crickets are much more energy efficient than cows.)
  6. What does this make believe scenario have to do with the real world?

Tips and Suggestions

I suggest you have a running list of “rules” that you as a group decide upon throughout the project. For instance, someone will probably ask if it’s okay to do a rooftop garden. Whatever you decide, you should keep documentation of the “rules” your class makes. The students get pretty competitive and this is helpful.

To simplify our model, we assumed a lot. 1) People only need calories to survive, not certain nutrients. 2) We have sufficient water, fertilizer, and everything else needed to grow the crops. 3) We can store crops up to one year, and there is no limit to the type of crops that can be planted due to climate, etc. 4) Animals can only eat the part of the plant that humans eat. 5) All animals reproduce each year. 6) We eat the entire weight of the animal in meat. And more. But, these assumptions lead to fantastic discussions! I have students write about them for part of the end paper. They are also great opportunities for extensions.

Even with all of the assumptions and simplifications, the students were really able to “get it” in terms of energy transfer and the 10% rule.

If you’d like a more detailed description or have any questions, please e-mail me. jesirhodes@gmail.com

I know KELLY KLUTHE has some cool stuff to share! Tag, you’re it!

Staying Positive in Uncertain Times

Aside

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it. This is not one of those posts. Not really, at least. 

If you aren’t following the news and/or don’t live in Kansas, you might not know we’re having a bit of a budget issue which has impacted our schools and might result in teachers not getting paid for the work they’ve already done. My aim here is not to be political, but if you would like to discuss that side of things, please let me know. Needless to say, there is blame to pass around, and while it may not be evenly spread among our three branches of government, it probably doesn’t all go to the same person/place.  At this point, the problem is there, and we can only work to solve it; pointing fingers and assigning blame will NOT serve in the best interest in our students, and will NOT get schools open in the fall. So I will not (for now) fall into this partisan trap, and I will trust in the process.

via GIPHY

I often tell my students “all you can do is all that you can do”. None of what I am doing is work specifically in the contract I signed at the beginning of the school year, and I won’t be paid for any of it. And none of what I am doing is particularly unique. In every district in this state there are many like me, and I am sure several working harder than even I can imagine. In this strange time, it is important for us to stick together, and for us to continue to shout out our friends and colleagues for the amazing work they’re doing. Be a beacon of hope to your students, colleagues, and communities, so they know there is someone who cares about their kids as much as they do, and who is working for them no matter the odds.

via GIPHY

The members of the KABT are amazing teachers who inspire me every day to get better at my craft, and to learn more content. They are explorers and innovators. There are people giving up their ENTIRE summer break to participate in RETs (go Jesi!). There are people offering summer classes and science camps (proud of you, OBTA Kluthe). There are many people working on Master’s degrees in education and biology.  And there are people who, despite no indication that anyone in power cares if we are working August or not, are tweaking, perfecting, adding, revamping, or collaborating to make the best possible learning experience for their students. Why? Because they are professionals who are going to do the job they were and are contracted to do, they’re going to be ready when the fall semester starts, and they refuse to compromise on the quality of their work because they know doing so may do irreparable harm to an entire generation of students.

What am I doing in my classroom? I am learning and trying to make myself a better teacher so that I can be considered worthy of the company I keep. I am creating connections with researchers to get my students equipment and experiences to enrich their classroom lessons. I’m writing grants so that my school’s already tight budget has a little less stress on it. I am starting a transition away from traditional grading schemes and moving towards standards-based grades with students being accountable for their curriculum and the evidence demonstrating they know the content (based off of the work of Camden Burton and Kelly Kluthe). I’m working on learning a new LMS (Canvas) so I can be as close to an expert as I can be when our first day of inservice rolls around in August when I know others will have questions. I am presenting to several teacher groups on topics I’m passionate about. I’ve rearranged my classroom and lab environments to make them more open to learning and sharing. (Not to mention my “little side project” as daddy-daycare provider to a two year-old girl.)

Keep up your amazing work, everybody. Share what you’re up to this summer (in or out of the classroom) on our Facebook page. I can’t thank you enough for what you do!

via GIPHY

Drew Ising
Biology Teacher, Baldwin City, KS
President-Elect, KABT

In My Classroom #13 – Curators of Natural History

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

 

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

 

Students in my classroom recently completed a project based learning unit centered around the driving question ‘How can we, as museum exhibit designers, build a museum exhibit about a somatic cell type that will engage younger audiences?’ The question came about as a collaboration between myself, Jessica Popescu, who teaches one door down from me, and the staff at the Columbus Museum in Georgia, most specifically Rebecca Bush, the curator of history. The project consisted of students working in teams of three to four. The teams first divided themselves up into specific roles and selected a somatic cell type to research and display. The potential roles each had real-world parallels in the museum industry. Role options consisted of a marketing director, a manipulative designer, an application letter writer, and a presentation specialist. The Columbus Museum emphasized how these roles relate to their real world job responsibilities in a video displayed to the students early in the project. The video also included several example exhibits within the museum and information as to what type of items the staff looks for in a museum exhibit.

 

The reason we decided to have students design their exhibits around a specific cell type, as opposed to just ‘animal’ or ‘plant’ cell was to help students understand the interactions, and the importance of those interactions, between different cells in a multi-cellular organism. Students had baseline knowledge of cell organelles, the cell membrane, and cellular transport when the project began.

Exhibit 1

The project as a whole was very successful. Students created a variety of excellent products, a few of which are pictured in this post. Additionally, students took pride in displaying their exhibits to students from a variety of different classrooms. Also present for presentations and ‘museum walks’ were teachers from throughout the school and various members of the administration. The students will also receive feedback on their final products from the staff at the Columbus Museum. One of the most significant signs of success to me was the way in which students generated questions throughout their research. A moment that sticks out to me occurred as a student attempting to do the bare minimum and simply draw a picture of a red blood cell (their cell type), asked the question, ‘Why don’t red blood cells have many organelles?’ This question led him down a path of discovery that led to another question, ‘If red blood cells don’t have a nucleus, then they probably don’t have DNA which is needed to make protein, so how in the world do they have a large supply of the protein ‘hemoglobin?’ Another example of a questioning attitude is drawn from Mrs. Popescu’s classroom. A group of students researching cone cells asked another group why they decided to color their cone cell model yellow when humans only have cone cells for red, blue, and green.

16

In completing the project next year, I will strive to offer students more opportunities at receiving feedback before the final displays are done. Also, while the student generated questions were awesome, my goal is to structure the project so that more students begin asking these types of thought provoking questions.

 

Happy holidays everyone, and now I’ll throw it back over to Brittany Roper for the first post of the new year.

In My Classroom #11: Cell Signaling

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.  Here we go:

[Use the links… they’re helpful]

Cell Signaling.

How does something so awesomely complex get such an innocuous name? The science behind how our cells communicate within and between their cell membranes was something that either I had never been taught (or blocked from my memory… sorry Mr. Kessler), but when I first started teaching College and AP Biology, I had to quickly get myself up to speed on. The underlying principle (like is true with any complex biochemical reaction series it seems) is actually fairly simple.

A signal is received. The message is passed from one messenger to the next. Eventually the message is received and a response occurs.

We can read about, model, diagram, memorize, write about, ponder upon, and generally learn about cell signaling in a number of “traditional” ways. But how do you experiment with it? And how can it be open (or even guided) inquiry?

Here’s what we try: Tastebud Transduction Lab

We start by reading and annotating an article, “Matters of Taste” from The Scientist on how our tastebuds are able to differentiate between all the different flavors we take in on a daily basis. I really like the detail they go into without losing their audience. [I have an edited version for 9th graders if you’re interested].

After a discussion in class, and a “Guided Reading” to reinforce the information from class, we begin our test by generating a list of things we think correlate to taste bud density, but that might not be directly related. For example, are “supertasters” pickier eaters? Students then design and conduct an experiment that looks for relationships between taste bud density and their chosen dependent variable.

Since it is so difficult to actual observe and manipulate these taste signaling pathways, I like to use this lab as a lesson in statistics, correlations, and significance. Students use a graphing program (plot.ly— it is AWESOME) to make a plot, then we get to talk about what R² really means, how correlation doesn’t imply causation, standard curves and outliers, and generally why stats are useful tools in research but can mislead even very intelligent, careful scientists.

Male vs. Female Taste Bud Density

Male vs. Female Taste Bud Density

I’m out of words (actually way over), but if you want to know more, email me (andrewising@gmail.com), comment here, or tweet me (@Mr_Ising or @ksbioteachers). One day Michael Ralph and I will get around to creating a bunch of “stats for science class” resources, but if there is interest here, it might give us a little more motivation to start earlier. Good luck, Jessica Otradovec Popescu, because you’re on the clock!

In My Classroom #10: Protein Folding

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

 

Last week I used a very simple, very low-tech but highly effective way to teach protein folding.  After teaching my students how to read the genetic code, I gave them a strand of DNA for which they would transcribe and translate to find the amino acid sequence.  Students then used those little marshmallows and strung them on a strand of thread, much the way many of us strung popcorn garland for the holidays.

 

FullSizeRender (1)

 

They wrote on each marshmallow (with sharpies) the name of the amino acid.  I provided each student a chart which gave them a basic chemical description of each amino acid (polar, non-polar, etc..)  We then walked through how the primary structure of their protein would fold.  With each fold they would use toothpicks to hold their marshmallows in place – representing whichever type of bond formed.  When we were done – volla!  A 3D protein!  (My students have not had chemistry yet, so we needed to cover basic chemical bonding….but they generally got the idea.)

 

FullSizeRender

 

I just finished grading their assessments late last week, and the majority of students have a decent understanding of tertiary structure of proteins.  I like taking an abstract concept and turning it into something concrete!  Now….its Drew Ising’s turn……..tag!

In My Classroom # 9: I’ve Come to Have An Argument

Welcome to the KABT new blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms, and to some people there have been cool things so long that it feels like they are old news. In this segment, if you are tagged all you need to do is share something you’ve done in your classroom in the last two weeks. It must be recent, but that’s it. If you are tagged, you’ve got two weeks to post your entry. Who knows… your supposedly mundane idea, lesson, or lab might be exactly what someone else really needs. Keep it brief, keep it honest about the time window, and share it out! Here we go:

 

This year, I am working on what kind of labs my students are conducting, and building my students skills in inquiry.  We have spent the first weeks focused on questioning and the inquiry process.  My students have already conducted a guided inquiry on Drosophila behavior in choice chambers where they came up with their own testable and measurable conditions, and followed through the scientific method. It was a great learning experience for all of us, but I want to find ways to make these labs a richer experience for the students.

Students are investigating Drosophila behavior in their choice chambers.

Students are investigating Drosophila behavior in their choice chambers.

In a process to embed the Scientific Practices and Cross-Cutting Concepts into my labs, I am starting to follow the model for Argument Driven Inquiry in my classes.  I have so far been very pleased in how my students have engaged in the experiences, and it’s exciting to see my students have a chance to engage in planning investigations and leading their own learning.  They also get a chance to share their ideas and understanding with the class when they defend their claims in an argument session.

My students are currently working on their second argument.  In our first argument, students worked on making and defending a claim to answer the question “Should Viruses be considered a living or non-living thing?” We talked briefly about the problem, and the data they had access too, but I did not explicitly teach them much of the characteristics of life before jumping in.  I simply helped model the process and what are final product could look like.  I was blown away by the results.

One group of students begins defending their claim to whether viruses are living or non-living. Their evidence and justification were a key part of their boards that they were assessed for.

One group of students begins defending their claim to whether viruses are living or non-living. Their evidence and justification were a key part of their boards that they were assessed for.

Most of my students were digging much deeper into the content then I had ever planned on assessing them for.  I had many groups looking into how viruses replicate and asking questions about why some viruses had DNA and others RNA. Students were going as far to research and describe plasmid structure, and how that may affect their claim. I did not ask for a specific amount of evidence, but only that it be sufficient to defend their answers to the guiding question.

Argument Boards

Once the evidence and justification was gathered, we all had a round-robin where we went around and critiqued other groups arguments and evidence.  Many of my students sided with the camp that viruses are non-living, but I had a couple groups that defended their status as living things.  This made are initial argumentation session somewhat one-sided, but the conversations we had were excellent.  After students recieved critiques, they went back and reformed their arguments if needed, and turned in final written arguments as groups.

20150909_135640

A student in my class defends his group’s divided claim on virus’ living status. Some groups found evidence to support both sides, and were a little divided on whether viruses fit the model for life.

Having this experience made teaching the characteristics of life much easier. I am now having my students forming arguments on “Why do Great White Sharks travel such long distances” as a way to study animal behavior and ecology. We are using real shark tracking data from a group called OCEARCH , and going deeper into the process by having students formulate their own methodology for collecting data.  My advanced bio classes will also be doing a peer-review of final argument papers to help improve their content writing. So far, my students seem to really enjoy the process of argumentation and I hope to post more on this topic in the future.

For now, I am passing the torch on to our Kansas Teacher of the Year, Shannon Ralph, to see what’s going on in her classroom.

In My Classroom #8 – Get At the Engineering

Welcome to the KABT blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

 

The idea is that we all do cool stuff in our rooms and to some people there have been cool things so long that it feels like they are old news. However, there are new teachers that may be hearing things for the first time and veterans that benefit from reminders. So let’s share things, new and old alike. When you’re tagged you have two weeks to post the next entry. Your established staple of a lab or idea might be just what someone needs. So be brief, be timely and share it out! Here we go:

 

My student teacher and I made a decision to try to do a better job of addressing the engineering aspects of the NGSS expectations this year. I wanted to take a new look at the end of my Scientific Method unit to insert some engineering considerations. Vivian Choong had the idea to discuss water quality and use the 2016 Olympic Games in Rio as a context for a PBL.

 

It's in the standards, seriously.

It’s in the standards, seriously.

 

We decided to retool my blackworm lab to use them as bioindicators of water quality and take measurements of the worms’ homeostasis before and after different remediation attempts on some “polluted” water. Students designed ecological water filters (soil, sawdust… that kind of thing, not chemical filtration) and considered the economic costs and ecological benefits of their interventions.

We thought the students would measure blackworm pulse rate or other behavior indicators, but they gravitated much more to measurements of water turbidity and coloration. It’s super cool and they’re really engaged with the topical nature of the problem. This is a keeper that I hope to formalize after some debrief and further revision.

Here is our anchor video for the activity. Don’t ask me for submission tiers, because we’re not there yet!

https://www.youtube.com/watch?v=z_w16PjoNVE

IMG_20150902_090823 IMG_20150902_090839

That’s it for me. Tag Andrew Davis, you’re it.

 

 

In My Classroom – #7 (Natural Selection Activity)

Welcome to the KABT new blog segment, “In My Classroom”. This is a segment that will post about every two weeks from a different member. In 250 words or less, share one thing that you are currently doing in your classroom. That’s it.

The idea is that we all do cool stuff in our rooms, and to some people there have been cool things so long that it feels like they are old news. In this segment, if you are tagged all you need to do is share something you’ve done in your classroom in the last two weeks. It must be recent, but that’s it. If you are tagged, you’ve got two weeks to post your entry. Who knows… your supposedly mundane idea, lesson, or lab might be exactly what someone else really needs. Keep it brief, keep it honest about the time window, and share it out! Here we go:

This year, I tried the bird beak adaptation activity for natural selection for the first time. I looked at several variations of the activity online, and took pieces of some and added in my own. I not only wanted to show adaptation, but also how adaptation might be different in different environments (islands with different food sources). So here is what we did.

All of the “birds” went to the library with their “beaks” (tweezers). This was the mainland, a big continent. We noticed that some beaks were slightly different than others.

Beaks1tweezers

 

We then were swept up in a hurricane and brought to the classroom, where we found refuge on different islands (tables), too far away for any birds to travel back and forth with normal circumstances. Each table had a different environment, and different food source (big beans, little beans, toothpicks, pennies, paper clips, barley).2FoodSource

The students then took turns “eating”. The one who go the most food had 2 offspring. The bird who got the least died before they could reproduce. The one in-between had one offspring. The offspring were exactly like the parents. These rules made it super simple, which was nice for an introduction activity. Throughout the activity we talked about how simplified this model was, and how real life would be different.

Next, I introduced some mutations (a spoon and a test tube clamp). image3mutations

They acted out three generations. Obviously the spoon was very successful with big beans but pretty detrimental with toothpick prey. We had a nice conversation about how mutations are neither good nor bad, it depends on the environment. They also got to see one way geographic isolation can lead to speciation. We followed up with a more real life example using some HHMI Pocket Mouse activities. This activity was done before we really talked about evolution. It was nice way to begin our discussion. I think having the different tweezer beaks at the beginning was confusing, so next year I think I’ll simplify it further and have all the tweezers the same. I would also like to add in a more complex natural selection activity later on. What’s your favorite natural selection activity?

 

Tag Andrew Taylor, you’re it! Tell us about something you’re doing in your classroom.