BioRender

Imagine for me, if you would, this scenario: you are trying to make a diagram for a lab report (or assessment or poster or whatever) but you can’t find the right figure. So you draw something that resembles what you want, or you use an image you found online that is similar to what you want, but then you spend almost as much time identifying and discussing the weaknesses of the model as you do working with the model itself.

Diffusion Diagram

[ESPN Documentary Narrator Voice] What if I told you there was a free way to make high-quality, detailed models with your students?

My wife’s uncle shared BioRender with me this week, and I knew I needed to share this ASAP.  Watch this intro video you’ll see when you sign up for a free account, and try to act cool… I’ll wait.

DID YOU FREAK OUT A LITTLE BIT?! I did. (OK, maybe more than a little bit.) There is a lot to explore with this, but here are some highlights for me. Not only are there 1000s of icons you can add to your figure, but you can control the color scheme for many of them and add labels to make your models even more robust.
It has some built-in support to pull models from the Protein Databank. When you have the EXACT protein you want to use, you can control how your protein is visualized and rotate the protein so you show the exact part of interest. After Andrew Taylor’s Fall Conference presentation on 3D-printed models, I went looking for the proteins associated with the pharmaceutical product Gleevec.  

I encourage you to go check this out. Visit https://biorender.io/ and create an account. Once you start creating, share your best figures with us here or on social media. I may be speaking for myself here, but I can’t wait to start using and making these models with my students!

KABT: Facebook Group  or   Twitter
BioRender: Twitter

edited to fix a capitalization mistake 8/13

TBT: Protein Synthesis Models (In My Classroom)

EDITOR’S NOTE: THIS POST ORIGINALLY APPEARED IN FEBRUARY 2015 AS THE 3RD INSTALLMENT OF THE “IN MY CLASSROOM” SERIES. KABT MEMBER IN EXILE, CAMDEN BURTON, SHARED THIS ACTIVITY WHERE HE HAD HIS STUDENTS COMPARE AND CRITIQUE MODELS. ENJOY THIS KABT CLASSIC!

Thanks to a little idea from Brad I thought I would try something with my AP Biology students this week that I saw him try with his BIO 100 students at KU earlier.

We’re currently marching our way through the mind-bending terror that is protein synthesis. So we’ve gone over the whole process a bit but to make sure we were not getting lost in the details I gave them this:

Blank central dogma 1Blank central dogma 2

Two different models of the same process. Nothing earth-shatteringly innovative but how I framed it and worked with it was unique to me. I didn’t just say it was a worksheet to complete. I framed it as 2 different models of the same process. If they wanted to use the picture in their book that was ok because the diagram in their Campbell book also looked different. What I was surprised with was how much students struggle translating [pun] knowledge across models. Students struggled with labeling processes versus structures, labeling the same structure that was differently drawn in two models, and especially when one model added or removed details (like introns and exons).

The other cool part was that afterwards when students shared their answers on the board, they had lengthy discussion about what was “right”. For example, two students argued whether the 4th answer from the top was “pre-mRNA” or “mRNA” and explained why they thought that. After looking to me I shared that by their explanations both could be right. That’s what I think was cool, students argued different answers where with the proper explanations, either could be right. So because of that, I would avoid giving an “word bank”.

Also, at the very end I created a list on the board titled “limitations” and I had them share what was limiting about these diagrams. Some thoughts were “no nucleotides were shown entering RNA polymerase”, “no other cell components were shown”, “the ribosome on top only had room for one tRNA”, “no mRNA cap or tail were shown”, and many more.

I found this exercise useful because I struggle giving students modeling opportunities (especially non-physical ones) and this was a simple way for students to get practice comparing/contrasting models while also discussing the usefulness and limitations of them.

Alright, for the 4th installment I nominate el presidente himself, Noah Busch.

Summary Post for Teaching Quantitative Skills

Part 1: Teaching Quantitative Skills using the Floating Disk Catalase Lab: Intro
Part 2- Teaching Quantitative Skills in a Lab Context: Getting Started in the Classroom
Part 3- Establishing an Experimental Procedure to Guide the Home Investigation
Part 4- Teaching Quantitative Skills: Data Analysis
Part 5- Curve Fitting AKA Model Fitting–the End Goal
Part 6- The Final Installment: Extending and Evaluating Quantitative Skills.
previous arrow
next arrow
ArrowArrow
Slider

These are links to the posts on Teaching Quantitative Skills with the Floating Disk Enzyme Lab

  1. http://www.kabt.org/2016/11/29/teaching-quantitative-skills-using-the-floating-disk-catalase-lab-intro/
  2. http://www.kabt.org/2016/12/01/teaching-quantitative-skills-in-a-lab-context-getting-started-in-the-classroom/
  3. http://www.kabt.org/2016/12/04/establishing-an-experimental-procedure-to-guide-the-home-investigation/
  4. http://www.kabt.org/2016/12/09/data-analysis/
  5. http://www.kabt.org/2016/12/18/curve-fitting-aka-model-fitting-the-end-goal/
  6. http://www.kabt.org/2017/01/06/the-final-installment-extending-and-evaluating-quantitative-skills/

Model Building and Building on Models

I make my students build and use models on a daily basis in my classrooms. I think that I have a better than average grasp on the Next Generation Science Standards, their practice and three-dimensional lesson planning. But I have apparently never thought to throw a bunch of vocabulary words at my students and give them the time to really struggle to connect them into a cohesive model with their groups.  And at the end of a session on Cognitive Models, presented by AP/IB Biology teachers Lee Ferguson and Ryan Reardon, that is exactly what we did.

nabtmodel

To start, the instructions were sparse: Create connections and uncover relationships between pancreatic β-cells and photosynthesis. My group was made up of six other AP Biology teachers from 4 states, none of us with any idea where to start. There was some discussion about the significance of the color of each card, which it ends up wasn’t important… there just wasn’t time to sort them before the session.  We eventually found the word “Metabolism”, which we all agreed was the one thing that all the cards shared. From there, we tried to make shorter stacks of cards that were related. For example, “Hyperglycemia”, “Blood sugar rises”, and “insulin”.

Once we had all the cards grouped, we tried to place them into a pseudo-concept map. In our classrooms, I would have probably done this on a big whiteboard so we could draw arrows and write connecting terms, but my group guess that the Sheridan didn’t want us writing on their table cloths. 🙂  As we went, we had to stop and rearrange our map several times and each time we edited the map, members of the group were justifying why some cards had to stay or move.  It was a really great conversation and I learned some things about feedback loops that I don’t think I had ever known.

At the end of the process, we were encouraged to go look at what the other tables had put together and reflect on our map. To my surprise, none of the other groups had anything resembling our model. Talking to some of the other groups, I don’t think that anyone had a model that I think failed to achieve the original objective. It was really a powerful reminder that students, no matter the amount of information they may possess, each approach a problem from a unique viewpoint. And when you have people put together information, even people that all know “the right answer”, there are many ways to arrive at that conclusion.

Needless to say, next week when we start preparing for our next test in my 9th grade Biology class, my students are getting a stack of 3×5 cards tossed on to their tables. I can’t wait to hear their conversations and see what they create!

This post is part of a series of posts from KABT members reflecting on some of the most important things they’ll bring back into their classrooms from the NABT 2016 Professional Development Conference.