In DNA, C pairs with G and X pairs with Y?

Big news! I recently read an article in the Washington Post that wasn’t about our current political leadership, and I highly recommend it to all Biology teachers. An international team of researchers has published their findings in a paper titled, “A semisynthetic organism engineered for the stable expansion of the genetic alphabet” in journal PNAS. (If you like to also read the primary literature on these newspaper and magazine science stories, it is unfortunately behind a paywall.)

via NIH Flickr Acct.

I am no Eric Kessler, resident KABT expert on synthetic biology (synbio), but I was amazed by what I read. It is incredibly fascinating to consider the scientific breakthroughs that have been made during my teaching career, not to mention my lifetime. I was lucky enough to have Mr. Kessler as my AP Biology teacher when I was a high school student, and we barely touched on the topic of biotechnology in the halcyon days of the early 2000’s. Even in my undergraduate education, little time was spent on biotechnology and genetics labs. Fast forward about a decade and scientists are able to build synthetic nucleotides that can be copied into E. coli and conserved for more than 60 generations. This leads me to an obvious question: what will be possible when my current crop of freshpersons are leaving college?

Environmental biochemists have long hinted about the possibility of a microorganism capable of safely remediating oil spills and other industrial accidents. Could this lead to what amounts to biomachines capable of conducting targeted medical therapies in a patient? I have a sister with cystic fibrosis, and would like to imagine a time when an SSO (semisynthetic organism) is capable of producing functional copies of CFTR1, effectively curing her of the disease that once promised to take her life.

What was your reaction? What application would you like to see for this technology?

LINKS
Washington Post: “Biologists breed life form with lab-made DNA. Don’t call it ‘Jurassic Park’,” by Ben Guarino
Proceedings of the National Academy of Science of the United States of America: “A semisynthetic organism engineered for the stable expansion of the genetic alphabet,” by Y. Zhang and B. Lamb, et al.

TBT: Synthetic Biology (July 2010)

Editors note: This post on Synthetic Biology was originally published on the BioBlog 18 July 2010. While he at one point mentions that he doesn’t “pretend to be an expert” on SynBio, author Eric Kessler has gone on to do some amazing work with his students in the field. Somethings have changed in six years (here is a story by Ed Yong from March 2016), but please enjoy this look back into our archives. 


The 21st Century Prometheans?

A little over a year ago, Brad posted a link to a survey on Synthetic Biology.  Although it appears that little has fundamentally changed since then, this burgeoning field, along side nanotechnology, has become front page news, and will hopefully become a topic of conversation in your biology class in the near future.

I don’t pretend to be an expert on Synthetic Biology but I thought a few resources may provide you with enough background knowledge to approach the topic with your students this year.  Maybe they could use this post itself as a springboard for discussion or more research.  The post is in three parts, each accompanied by some thought provoking quotes from Mary Shelley’s Frankenstein…

Early Years and Standford’s Drew Endy

In these links you will will find a reference to one of the first papers in the field, a few comic responses to the field, and links to two YouTube videos (originally TED Talks) of Drew Endy explaining the difference between Synthetic Biology and the more standard and familiar recombinant DNA and genetic engineering technologies.

“The world was to him a secret which he desired to divine. Curiosity, earnest research to learn the hidden laws of nature, gladness akin to rapture, as they were unfolded to him, are among the earliest sensations he can remember . . . It was the secrets of heaven and earth that he desired to learn; and whether it was the outward substance of things or the inner spirit of nature and the mysterious soul of man that occupied him, still his inquiries were directed to the metaphysical, or in it highest sense, the physical secrets of the world.”

  1. Synthetic Biology: Engineering Escherichia coli to see light (November 2005)
  2. Nature’s comic on Synthetic Biology (November 2005)
  3. The Story of Synthia – another comic look at synthetic biology
  4. Synthetic Biology Organization with a press link to numerous popular critiques of synthetic biology
  5. SEED’s Cribsheet on Synthetic Biology (July 2010)


(June 2007)


(December 2008)

Venter creates the News & President Obama’s Responds

“There was none among the myriads of men that existed who would pity or assist me; and should I feel kindness towards my enemies? No: from that moment I declared everlasting war against the species, and, more than all, against him who had formed me and sent me forth to this insupportable misery.”


(May 2010)

  1. The President’s Emerging Technologies Interagency Policy Coordination Committee’s Inaugural Meeting (May 2010)
  2. NPR Story, Presidential Panel Scrutinizes Synthetic Biology (July 2010)

Resources for those interested in Doing some Synthetic Biology

The following resources are for entering the field of Synthetic Biology.  The first link will introduce you to an annual competition used to motivate undergraduate teams of students to design and engineer novel pathways in E. coli.  If you search around, I think that you’ll find that there has been a single high school team involved in the competition before.  Some of university sponsors are quite interested in developing a kit to introduce students to the methods synthetic biology.

  1. iGEM 2010
  2. Authentic Teaching and Learning through Synthetic Biology based the E. coli engineered to sense light
  3. The BioBricks Foundation
  4. Registry of Standard Biological Parts
  5. BioBrick Assembly Kit from New England BioLabs

“‘The labours of men of genius, however erroneously directed, scarcely ever fail in ultimately turning to the solid advantage of mankind.”

BioBuilder Professional Development Workshop in KS

logo-biobuilder-educational-foundation
After a few years of integrating Synthetic Biology into our molecular course offering at CAPS, I am happy to announce that we will be offering a 3-Day BioBuilder Workshop at CAPS on July 8-10.  This three day professional development opportunity will prepare educators to bring biological engineering and synthetic biology into their classrooms and laboratories.  The workshop will include:

    • Lectures that connect the engineering/science/math and technology aspects of these fields.
    • Labs and classroom activities taught from the online www.BioBuilder.org resources.
    • Lunchtime discussions with members of the synthetic biology community.
    • Activities that address the nuts and bolts of running an iGEM team.

Attendees will receive lunch each day and 45 PDPs. Attendees must commit to implementing a BioBuilder activity in the 2014-2015 academic year and provide feedback on the effort.

Who should apply?

    • High school Biology teachers, especially those teaching introductory biology or those looking for new ways to teach the AP content or for compelling material to teach college-bound students after the AP exam is completed
    • College-level instructors looking for classroom and lab curricula to include in a biotechnology-style class
    • Science Club leaders, in particular anyone looking for ways to bring cutting edge content to students with a variety interests from math to biology to electronics.

How to apply?

    • The application is online: http://biobuilder.org/workshops/
    • 3 day workshop is $250/person (scholarships are available).
    • Registration fees include full tuition, lunch each day, and written materials.
    • A non-refundable registration/deposit fee of $50 is due upon application, reserving your place in a workshop. Balance is due one week in advance of the workshop.
    • Pre-registration is required for all participants, as space is limited.

What is Synthetic Biology?

Synthetic Biology is an emerging field that applies engineering and mathematical principles to the development of novel biological systems. These principles and technologies extend the teaching of molecular genetic techniques into real world, authentic applications.  Examples of synthetic systems include bacteria that smell like bananas, and light-sensitive bacteria that can serve as pixels in a photograph. These teachable systems are included in
the curriculum at Biobuilder.org.

Why teach Synthetic Biology?

Synthetic biology provides teachers and students an engineering context to learn molecular biology, genetic engineering and microbiology methods. This approach asks students to learn while designing, or testing designs of, engineered biological systems. In addition, this approach provides science teachers with a means of exploring numerous state and national technology standards that are hard to address in most science classes.

Workshop Instructors

Kevin McCormick is a science teacher at Summit Technology Academy in Lee’s Summit, Missouri. He teaches the Project Lead The Way capstone courses in the Biomedical Sciences, Medical Interventions and Biomedical Innovations. He participated in a week long BioBuilder workshop held at MIT in the summer of 2013.

Dr. Dave Westenberg is a microbiologist who has taught in the Department of Biological Sciences at Missouri University of Science and Technology for the past 17 years. He is co-advisor for the Missouri S&T iGEM team and teaches a course in Biological Experimental Design and Innovation. He also chairs the American Society for Microbiology Committee on K-12 Outreach.

Eric Kessler is completing his 22nd year as a biology instructor. He currently directs the Bioscience Program in the Blue Valley School
District’s Center for Advanced Professional Studies (CAPS). He has received grants and awards that include the Milken Award, Kansas
Outstanding Biology Teacher, Kansas Wildlife Educator of the Year, and NSTA Ron Mardigian Bio-Rad Biotechnology Explorer Award. He participated in a week long BioBuilder workshop held at Purdue in summer of 2012, and has facilitated the high school iGEM program in 2012 and 2013.

Synthetic Biology


The 21st Century Prometheans?

A little over a year ago, Brad posted a link to a survey on Synthetic Biology.  Although it appears that little has fundamentally changed since then, this burgeoning field, along side nanotechnology, has become front page news, and will hopefully become a topic of conversation in your biology class in the near future.

I don’t pretend to be an expert on Synthetic Biology but I thought a few resources may provide you with enough background knowledge to approach the topic with your students this year.  Maybe they could use this post itself as a springboard for discussion or more research.  The post is in three parts, each accompanied by some thought provoking quotes from Mary Shelley’s Frankenstein…

Early Years and Standford’s Drew Endy

In these links you will will find a reference to one of the first papers in the field, a few comic responses to the field, and links to two YouTube videos (originally TED Talks) of Drew Endy explaining the difference between Synthetic Biology and the more standard and familiar recombinant DNA and genetic engineering technologies.

“The world was to him a secret which he desired to divine. Curiosity, earnest research to learn the hidden laws of nature, gladness akin to rapture, as they were unfolded to him, are among the earliest sensations he can remember . . . It was the secrets of heaven and earth that he desired to learn; and whether it was the outward substance of things or the inner spirit of nature and the mysterious soul of man that occupied him, still his inquiries were directed to the metaphysical, or in it highest sense, the physical secrets of the world.”

  1. Synthetic Biology: Engineering Escherichia coli to see light (November 2005)
  2. Nature’s comic on Synthetic Biology (November 2005)
  3. The Story of Synthia – another comic look at synthetic biology
  4. Synthetic Biology Organization with a press link to numerous popular critiques of synthetic biology
  5. SEED’s Cribsheet on Synthetic Biology (July 2010)


(June 2007)


(December 2008)

Venter creates the News & President Obama’s Responds

“There was none among the myriads of men that existed who would pity or assist me; and should I feel kindness towards my enemies? No: from that moment I declared everlasting war against the species, and, more than all, against him who had formed me and sent me forth to this insupportable misery.”


(May 2010)

  1. The President’s Emerging Technologies Interagency Policy Coordination Committee’s Inaugural Meeting (May 2010)
  2. NPR Story, Presidential Panel Scrutinizes Synthetic Biology (July 2010)

Resources for those interested in Doing some Synthetic Biology

The following resources are for entering the field of Synthetic Biology.  The first link will introduce you to an annual competition used to motivate undergraduate teams of students to design and engineer novel pathways in E. coli.  If you search around, I think that you’ll find that there has been a single high school team involved in the competition before.  Some of university sponsors are quite interested in developing a kit to introduce students to the methods synthetic biology.

  1. iGEM 2010
  2. Authentic Teaching and Learning through Synthetic Biology based the E. coli engineered to sense light
  3. The BioBricks Foundation
  4. Registry of Standard Biological Parts
  5. BioBrick Assembly Kit from New England BioLabs

“‘The labours of men of genius, however erroneously directed, scarcely ever fail in ultimately turning to the solid advantage of mankind.”